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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
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2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

X-ray testing has been adopted as the principal non-destructive testing approach to identify defects within a casting component. 
However, manual detection for X-ray images carried out by operator or expert always tends to be time-consuming, subjective 
and error-prone. Intelligent inspection techniques based on computer vision, which have been broadly employed in object 
recognition with promising results in optical natural images, provides a new idea for computer aided detection of casting defects 
in X-ray images. In this paper, we compare and evaluate several methods, most of which have not been researched for computer 
aided detection of casting defects in X-ray images and are based on different feature engineering methods and machine learning 
models, including local binary patterns-SVM, Gabor-SGD, histogram of oriented gradient-random forest and combination 
among them, to pursue an approach with better performance on detection of casting defects in X-ray images from the our 
InteCAST dataset. The experimental results demonstrate that the best performance was acquired by LBP feature and an 
ensemble learning model, which indicates that the approach proposed provides valuable reference for solving the problems in 
manual detection.  
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1. Introduction 

Foundry is the footstone of aerospace, ship, automobile, machinery and other manufacturing industries. Casting 
defects being harmful to the final product quality during processes always occur [1].Cracks, gas-holes, high-
inclusions, low-inclusions, shrinks, shrinkage-holes and incomplete fusion are several kinds of common casting 
defects.[2]. Failure of critical mechanical components would occur, if those defects are not able to be detected. 
Several examples of castings with defects are illustrated in Fig. 1. It is a necessary to check every part thoroughly to 
avoid accidents. Detection defect early is helpful to find defective products as early as possible during manufacturing 
process and to save time as well as cost [3].  

Nondestructive testing technology for castings is a necessary procedure to ensure the quality of products. Among 
all kinds of non-destructive testing technologies, X-ray testing methods are widely used because they can detect the 
internal structure of the object to be detected and display in real time. In the process of inspection, at least 10 X-ray 
images must be collected from each casting to ensure the comprehensive inspection of each part. In many foundry 
enterprises, manual inspection (one person reviews one person, or even many people review), which is still a critical 
element in the process, is mostly adopted to carry out quality inspection. The quality of defect detection is related to 
the operator's technical level, mental state and inspection experience. These uncertainties make the responsible 
accidents, which could be very expensive for the company, caused by defect omission occur from time to time. In 
addition, with the increase of castings production, the contradiction between the casting yields and the inefficient 
manual inspection is particularly prominent and the performance of human-based inspection does not scale well. For 
these reasons, the application of computer aided X-ray systems naturally emerges as a solution to this problem for 
the development of foundry enterprises. X-ray systems have not only raised quality through repeated objective 
inspections and improved processes, but have also increased productivity and consistency by reducing labor costs.  

However, computer aided identifying casting defects in X-ray images still remains a challenging task. Cropped 
images of regions with and without defects are shown in Fig. 2, from some of which it is clear that there are some 
patterns that can be easily detected (e.g. defects that are irregular in shape and size with bright background and no-
defects that are with regular structures). However, the recognition of both classes can be very difficult for low 
contrast defects because they are very similar to homogeneous no-defects. Taking Fig. 2.a 2,10 (image patch at row 
2 column 10 in Fig. 2.a) and Fig. 2.b 2,10 (image patch at row 2 column 10 in Fig. 2. b) as example, the flaw is just a 
darker spot and the flaws signal is only slightly greater than the background, which causes that image patch with 
defects are very similar to homogeneous image patch without defects and causes that the recognition of both classes 
can be very difficult.  

This paper attempts to pursue an approach with better performance on detection of casting defects in X-ray 
images from our InteCAST dataset. We collected 227 full size (3072 × 2400) X-ray images of supporting plates in 
aeromotors from a Chinese aerospace enterprise. 500 image patches(250 × 250) with defects and 500 image 
patches(250 × 250)  without defects were cropped from all full size images. We compare and evaluate several 
methods, most of which are based on different feature engineering methods and machine learning models, including 
local binary patterns-SVM, Gabor-SGD, histogram of oriented gradient-random forest and combination among 
them. We believe that this paper possesses high reference value for similar task on computer aided detection.  

The rest of the paper is organized as follows. First, the related works of this paper are explained in Section 2, and 
the assessment methods employed is described in Section 3. The obtained results are presented and discussed in 
Section 4. Finally, some conclusions and future work are reported in Section 5. 

 
a) #A1033 

 
b)  #A1034 

Fig. 1. Two examples of defects in real X-ray images of strut in aeromotor from InteCast dataset 
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1. Introduction 

Foundry is the footstone of aerospace, ship, automobile, machinery and other manufacturing industries. Casting 
defects being harmful to the final product quality during processes always occur [1].Cracks, gas-holes, high-
inclusions, low-inclusions, shrinks, shrinkage-holes and incomplete fusion are several kinds of common casting 
defects.[2]. Failure of critical mechanical components would occur, if those defects are not able to be detected. 
Several examples of castings with defects are illustrated in Fig. 1. It is a necessary to check every part thoroughly to 
avoid accidents. Detection defect early is helpful to find defective products as early as possible during manufacturing 
process and to save time as well as cost [3].  

Nondestructive testing technology for castings is a necessary procedure to ensure the quality of products. Among 
all kinds of non-destructive testing technologies, X-ray testing methods are widely used because they can detect the 
internal structure of the object to be detected and display in real time. In the process of inspection, at least 10 X-ray 
images must be collected from each casting to ensure the comprehensive inspection of each part. In many foundry 
enterprises, manual inspection (one person reviews one person, or even many people review), which is still a critical 
element in the process, is mostly adopted to carry out quality inspection. The quality of defect detection is related to 
the operator's technical level, mental state and inspection experience. These uncertainties make the responsible 
accidents, which could be very expensive for the company, caused by defect omission occur from time to time. In 
addition, with the increase of castings production, the contradiction between the casting yields and the inefficient 
manual inspection is particularly prominent and the performance of human-based inspection does not scale well. For 
these reasons, the application of computer aided X-ray systems naturally emerges as a solution to this problem for 
the development of foundry enterprises. X-ray systems have not only raised quality through repeated objective 
inspections and improved processes, but have also increased productivity and consistency by reducing labor costs.  

However, computer aided identifying casting defects in X-ray images still remains a challenging task. Cropped 
images of regions with and without defects are shown in Fig. 2, from some of which it is clear that there are some 
patterns that can be easily detected (e.g. defects that are irregular in shape and size with bright background and no-
defects that are with regular structures). However, the recognition of both classes can be very difficult for low 
contrast defects because they are very similar to homogeneous no-defects. Taking Fig. 2.a 2,10 (image patch at row 
2 column 10 in Fig. 2.a) and Fig. 2.b 2,10 (image patch at row 2 column 10 in Fig. 2. b) as example, the flaw is just a 
darker spot and the flaws signal is only slightly greater than the background, which causes that image patch with 
defects are very similar to homogeneous image patch without defects and causes that the recognition of both classes 
can be very difficult.  

This paper attempts to pursue an approach with better performance on detection of casting defects in X-ray 
images from our InteCAST dataset. We collected 227 full size (3072 × 2400) X-ray images of supporting plates in 
aeromotors from a Chinese aerospace enterprise. 500 image patches(250 × 250) with defects and 500 image 
patches(250 × 250)  without defects were cropped from all full size images. We compare and evaluate several 
methods, most of which are based on different feature engineering methods and machine learning models, including 
local binary patterns-SVM, Gabor-SGD, histogram of oriented gradient-random forest and combination among 
them. We believe that this paper possesses high reference value for similar task on computer aided detection.  

The rest of the paper is organized as follows. First, the related works of this paper are explained in Section 2, and 
the assessment methods employed is described in Section 3. The obtained results are presented and discussed in 
Section 4. Finally, some conclusions and future work are reported in Section 5. 
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Fig. 1. Two examples of defects in real X-ray images of strut in aeromotor from InteCast dataset 
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a) patches without defects  

b) patches with defects 
Fig. 2. Examples of patches containing defects (a) and no-defects (b) from our database 

2. Related Works 

Lots of approaches for computer aided detection of defects in casting X-ray images have been reported in the 
literatures during the past several years [4]. Background reconstruction applying a dictionary is a common method, 
in which an estimated and reconstructed background image without defects is subtracted from the original image 
leaving a new image with defects and noise [5-6]. Background reconstruction approaches were also applied to the 
task of welding defect detection successfully [7-9]. However, Background reconstruction methods tend to be very 
sensitive to the position of the defects and the noise in images [5]. There has been several released datasets for 
experimental purposes, such as the X-ray images dataset (GDXray) [10]. The performance on the GDXray welds 
series and castings series of several defect segmentation methods [11] are evaluated qualitatively. A comparative 
research [12] on various computer vision techniques for casting defects recognition has been reported, in which 
32×32 pixels image patches were cropped from full size casting X-ray images in GDXray and were employed to 
assessment lots of different classifiers. The deep convolutional neural network has been reported that they possess 
the ability to learn features of an image and recognize the objects in an image [13, 24]. Several deep learning models 
were also evaluated [12], acquiring not more than 86% image patch classification accuracy, which demonstrates that 
scarcity of casting X-ray images with defects causes that deep learning approaches, which demand massive data to 
train an ideal model, perform not so well as traditional machine learning methods on casting defect detection task. 
The best solution, which also provides a reference for our task, is LBP feature based linear SVM classifier model. 

2.1. Feature Engineering 

Feature engineering can be considered as a process of transforming raw images into features that possess the 
ability to better represent the underlying problem. Common features of images are mainly composed of local binary 
patterns (LBP), histograms of oriented gradients(HOG) and Gabor. 

LBP (Local binary pattern), which was first proposed by T.Ojala for texture feature extraction, is used to describe 
local texture features of images and it has significant advantages such as rotation invariance and gray invariance 
[14]. A neighborhood centered on a pixel is the element to be calculated on. The pixels adjacent the centered pixel 
are marked as 0, if the intensity values of adjacent pixels is equal to or smaller than the intensity value of the center 
pixel , otherwise marked as 1. Binary digits are then applied to represent corresponding pixel in the LBP feature 
map. Several scales of neighbor domain and block sizes were tested in this paper and the best results on our task 
were obtained with 3 by 3 neighbor domain and 5 by 5 blocks. 

HOG (histograms of oriented gradients) is a feature that is able to quickly extract the local gradient 
characteristics of an object. This feature engineering approach divides an image patch into blocks firstly, and then 
divides each block into cells, and then counts the gradient direction histogram of each cell. All gradient direction 
histograms of all cells were combined as the feature of an image [15]. Several orientations, size of per cell and sizes 
of per block were tested in this paper and the best results on our task were obtained with 9 orientations, 20 by 20 
pixels per cell and 2 by 2 cells per block. 
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Gabor [16] is a feature that can be used to describe image texture information and is sensitive to image edge, 
being able to provide good direction and scale selection characteristics. Gabor feature is insensitive to light changes, 
being capable of providing good adaptability to light changes. The frequency and direction of Gabor filter are 
similar to human visual system. Its essence is 2D Gaussian-shaped bandpass filters, which are with dyadic treatment 
of the radial spatial frequency range and multiple orientations and especially suitable for texture representation and 
discrimination. Several scales and orientations were tested in this paper and the best results for our task were 
obtained with 4 orientations and 3 scales. 

2.2. Machine Learning 

Traditional method requires manual programming of rules. However, machine learning is that a computer 
program is said to learn from experience E with respect to some task T and some performance measure P, if its 
performance on T, as measured by P, improves with experience [17].  

The classifier models, which were all implemented with Python, tested in this paper include SGD-
Classifier(sgd_clf)[18],SVM-Classifier(svc_clf,svcr_clf)[19],NaïveBayes-Classifier (GNB_clf,MNB_clf)[20], 
Random Forest–Classifier(rfc_clf) [22], AdaBoost–Classifier(adb_clf) [21], Gradient Boosting–
Classifier(grb_clf)[23]. For the sake of clearer representation in the curve figures, all models were also marked as 
capital letter, as listed in Table 1. 

Table 1. Classifiers and their corresponding code names. 

Model sgd_clf svc_clf rfc_clf GNB_clf MNB_clf svcr_clf adb_clf grb_clf 

Code names A B C D E F G H 

The hyperparameters of each model are set as follows. Linear SVC(svc_clf), Gaussian Naïve Bayes Classifier 
(GNB_clf) and AdaBoost Classifier(adb_clf) were applied default hyperparameters . The random state of 
SGDClassifier is 42. The number of estimators , max depth, and random state of RandomForestClassifier are 
respectively 66 , 100 and 1234. Alpha of Multinomial Naïve Bayes Classifier is 0.01. The kernel of SVM Classifier 
is set as rbf, and SVM Classifier is set to output probability. The number of estimators of 
GradientBoostingClassifier is 200. 

3. Assessment methods 

As described in Section 1, the size of learning set,  1
, LearnNi i

Learn Learn i
X y


 , is 800( 800LearnN  , 400 samples 

from each class),and the testing set,  1
, TestNi i

Test Test i
X y


,contains 200 samples( 200TestN  , 100 samples from each 

class). X is defined as the set of all image patches, and y is defined as the set of the labels of corresponding elements 
in X. The learning set and the testing set are disjoint. Then we have the following equation: 

Learn TestX X    (1) 
We define: 

 i i
Learn LearnF F X   (2) 

 i i
Test TestF F X   (3) 

Where  F x  is a processing operation representing feature engineering. After processing all image patches in 

X we get   1
, LearnNi i

Learn Learn i
F y


and  1

, TestNi i
Test Test i

F y


.  1
, LearnNi i

Learn Learn i
F y


is fed into a machine learning model, 

 H x  , to train the model. After training, 
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being able to provide good direction and scale selection characteristics. Gabor feature is insensitive to light changes, 
being capable of providing good adaptability to light changes. The frequency and direction of Gabor filter are 
similar to human visual system. Its essence is 2D Gaussian-shaped bandpass filters, which are with dyadic treatment 
of the radial spatial frequency range and multiple orientations and especially suitable for texture representation and 
discrimination. Several scales and orientations were tested in this paper and the best results for our task were 
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2.2. Machine Learning 

Traditional method requires manual programming of rules. However, machine learning is that a computer 
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performance on T, as measured by P, improves with experience [17].  

The classifier models, which were all implemented with Python, tested in this paper include SGD-
Classifier(sgd_clf)[18],SVM-Classifier(svc_clf,svcr_clf)[19],NaïveBayes-Classifier (GNB_clf,MNB_clf)[20], 
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Classifier(grb_clf)[23]. For the sake of clearer representation in the curve figures, all models were also marked as 
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Table 1. Classifiers and their corresponding code names. 

Model sgd_clf svc_clf rfc_clf GNB_clf MNB_clf svcr_clf adb_clf grb_clf 

Code names A B C D E F G H 

The hyperparameters of each model are set as follows. Linear SVC(svc_clf), Gaussian Naïve Bayes Classifier 
(GNB_clf) and AdaBoost Classifier(adb_clf) were applied default hyperparameters . The random state of 
SGDClassifier is 42. The number of estimators , max depth, and random state of RandomForestClassifier are 
respectively 66 , 100 and 1234. Alpha of Multinomial Naïve Bayes Classifier is 0.01. The kernel of SVM Classifier 
is set as rbf, and SVM Classifier is set to output probability. The number of estimators of 
GradientBoostingClassifier is 200. 

3. Assessment methods 

As described in Section 1, the size of learning set,  1
, LearnNi i

Learn Learn i
X y


 , is 800( 800LearnN  , 400 samples 

from each class),and the testing set,  1
, TestNi i

Test Test i
X y


,contains 200 samples( 200TestN  , 100 samples from each 

class). X is defined as the set of all image patches, and y is defined as the set of the labels of corresponding elements 
in X. The learning set and the testing set are disjoint. Then we have the following equation: 

Learn TestX X    (1) 
We define: 

 i i
Learn LearnF F X   (2) 

 i i
Test TestF F X   (3) 

Where  F x  is a processing operation representing feature engineering. After processing all image patches in 

X we get   1
, LearnNi i

Learn Learn i
F y


and  1

, TestNi i
Test Test i

F y


.  1
, LearnNi i

Learn Learn i
F y


is fed into a machine learning model, 

 H x  , to train the model. After training, 
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( )i i
Learn LearnH F y   (4) 

Testing set was applied on the trained model  H x  to test whether the images can be classified correctly, which 

means that whether ( )i i
Test TestH F y , where  i i

Test TestF F X , is tested. 

The confusion matrix, as shown in Fig.3, is adopted for quantitative assessment on the performance of a 
classifier. 

 

Fig. 3. An illustrated confusion matrix 

The confusion matrix offers a lot of information, from which Precision (Pr), Recall (Re) and Accuracy (η) can be 
acquired. 
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Precision (Pr), Recall (Re), F1-score and Accuracy (η) of an ideal model all equal 1.0, which means that all 
defects are detected with no false alarms. In this paper, Precision versus Recall curve, the receiver operating 
characteristic (ROC) curve, precision, recall and accuracy of each model was reported.  

4. Results and Discussion 

Three feature engineering algorithms combined with eight kinds of machine learning models were tested 
applying the assessment method in Section 3 with 800 image patches as learning set and 200 image patches as 
testing set. All results of this paper have been shown in Table 2 and Fig. 4.  

The higher Precision (Pr), Recall (Re), F1-score and Accuracy (η) of an approach is, the better performance of an 
approach is. The top three approaches are highlighted in red, green and blue, in Table 2. As for accuracy acquired by 
the all methods, the best three approaches, #24,16,19, 23, can be distinguished in Table 2 and Fig.6. #24,16,19,23, 
most of which are LBP based approaches, have a better accuracy with a range of 86% to 89%.  
#2,8,7,5,4,14,1,6,most of which are Gabor based methods, possess a low accuracy with a value less than 71%. From 
Fig.4, AUC(area under curve, e.g. accuracy) can be visualized through the curve of each method.  Fig.5 (a-b) show 
that rfc_clf, adb_clf and grb_clf , all of which are ensemble learning model, are better models for Gabor feature, 
although the accuracy obtained by #3,7,8 are not more than 75%. Fig.4 (c-d) show that grb_clf, rfc_clf and adb_clf 
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are better models for HOG feature, with AUC being respectively 86%,84% and 83%. Fig.4 (e-f) show that grb_clf, 
rfc_clf and adb_clf are also better models the best model for LBP feature, with AUC being respectively 89%, 88% 
and 86%. Those results coincide with the theory that the ensemble learning model has better classification 
performance than the single model on the same data set. 

 

Fig. 4. Precision versus Recall curves and the receiver operating characteristic (ROC) curves of all methods. (a) and (b) are the curves of 8 Gabor 
feature based methods. (c) and (d) are the curves of 8 HOG feature based methods. (e) and (f) are the curves of 8 LBP feature based methods. 

As for recall rates acquired by the all methods, different from accuracy and precision, the best three approaches 
are #6,9,17,18, the recall rates range of which is between 89% to 99% . From Fig.3 and equation (6), the higher a 
recall rate is, the less defects was classified as no-defects, which means that less defects will be missed. Thus, a 
higher recall rates is ideal in this paper, although more false alarms will be generated. Therefore, recall is the factor 
with high weight when picking the best approach for our task. 

Table 2. Performances of all approaches in the task for computer aided defect detection on InteCast X-ray images dataset. 

#  F H TP FP FN TN Pr Re F1 Accuracy AUC 

* Ideal Ideal 400 0 0 400 1 1 1 1 1 

1 

Gabor 

sgd_clf 327 73 230 170 0.69 0.42 0.52 0.62 0.62 

2 svc_clf 281 119 110 290 0.7 0.72 0.71 0.71 0.71 

3 rfc_clf 318 82 118 282 0.77 0.7 0.73 0.75 0.75 

4 GNB_clf 217 183 64 336 0.64 0.84 0.73 0.69 0.69 

5 MNB_clf 271 129 123 277 0.68 0.69 0.68 0.69 0.69 

6 svcr_clf 6 394 3 397 0.5 0.99 0.66 0.5 0.5 

7 adb_clf 282 118 118 282 0.7 0.7 0.7 0.71 0.71 

8 grb_clf 286 114 123 277 0.7 0.69 0.7 0.7 0.7 

9 

HOG 

sgd_clf 233 167 39 361 0.68 0.9 0.77 0.74 0.74 

10 svc_clf 316 84 56 344 0.8 0.86 0.83 0.82 0.82 

11 rfc_clf 347 53 72 328 0.86 0.82 0.83 0.84 0.84 

12 GNB_clf 281 119 85 315 0.72 0.78 0.75 0.75 0.75 

13 MNB_clf 279 121 93 307 0.71 0.76 0.74 0.73 0.73 

14 svcr_clf 217 183 63 337 0.64 0.84 0.73 0.69 0.69 
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As for recall rates acquired by the all methods, different from accuracy and precision, the best three approaches 
are #6,9,17,18, the recall rates range of which is between 89% to 99% . From Fig.3 and equation (6), the higher a 
recall rate is, the less defects was classified as no-defects, which means that less defects will be missed. Thus, a 
higher recall rates is ideal in this paper, although more false alarms will be generated. Therefore, recall is the factor 
with high weight when picking the best approach for our task. 

Table 2. Performances of all approaches in the task for computer aided defect detection on InteCast X-ray images dataset. 
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Gabor 

sgd_clf 327 73 230 170 0.69 0.42 0.52 0.62 0.62 

2 svc_clf 281 119 110 290 0.7 0.72 0.71 0.71 0.71 

3 rfc_clf 318 82 118 282 0.77 0.7 0.73 0.75 0.75 

4 GNB_clf 217 183 64 336 0.64 0.84 0.73 0.69 0.69 

5 MNB_clf 271 129 123 277 0.68 0.69 0.68 0.69 0.69 

6 svcr_clf 6 394 3 397 0.5 0.99 0.66 0.5 0.5 

7 adb_clf 282 118 118 282 0.7 0.7 0.7 0.71 0.71 

8 grb_clf 286 114 123 277 0.7 0.69 0.7 0.7 0.7 
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HOG 

sgd_clf 233 167 39 361 0.68 0.9 0.77 0.74 0.74 

10 svc_clf 316 84 56 344 0.8 0.86 0.83 0.82 0.82 

11 rfc_clf 347 53 72 328 0.86 0.82 0.83 0.84 0.84 
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15 adb_clf 334 66 69 331 0.83 0.82 0.83 0.83 0.83 

16 grb_clf 353 47 65 335 0.87 0.83 0.85 0.86 0.86 

17 

LBP 

sgd_clf 265 135 39 361 0.72 0.9 0.8 0.78 0.78 

18 svc_clf 310 90 42 358 0.79 0.89 0.84 0.83 0.83 

19 rfc_clf 364 36 60 340 0.9 0.85 0.87 0.88 0.88 

20 GNB_clf 315 85 87 313 0.78 0.78 0.78 0.78 0.78 

21 MNB_clf 299 101 61 339 0.77 0.84 0.8 0.8 0.8 

22 svcr_clf 304 96 116 284 0.74 0.71 0.72 0.73 0.73 

23 adb_clf 346 54 56 344 0.86 0.86 0.86 0.86 0.86 

24 grb_clf 369 31 51 349 0.91 0.87 0.89 0.89 0.89 

5. Conclusions 

In this paper, a comparative assessment of 24 approaches, which can be potential to be applied in practice for 
computer aided X-ray image defect detection, was reported. Three feature engineering methods, Gabor, HOG and 
LBP, and corresponding eight machine learning models, SGD classifier, SVM classifier, Random Forest classifier, 
Naïve Bayes classifier, AdaBoost classifier, Gradient Boosting-classifier, were evaluated. Results in our 
experiments show that the best candidate for our task was acquired by LBP feature based Gradient Boosting-
Classifier method, which obtains 89% of accuracy (with 91% precision and 87% recall) and is able to detect defects 
easily overlooked by naked eye, although it is tending to neglect defects that can be easily detected manually.  

Although the LBP feature based Gradient Boosting-Classifier method in this paper is for future research, we plan 
to collect more X-ray images of strut in aeromotors to make a larger dataset, and to invest more time to develop an 
improved LBP feature engineering method and to tune hyperparameters of Gradient Boosting-Classifier. Then, we 
will run the improved approach on full size X-ray images applying sliding windows or region proposal strategy. If 
we are able to get more images, we will also try to train an end-to-end deep learning model [24]. 
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